Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gan To Kagaku Ryoho ; 51(3): 291-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494811

RESUMO

An 84-year-old woman was diagnosed as having acute promyelocytic leukemia(APL)in July Year X-3. The test for promyelocytic leukemia- retinoic acid receptor alpha(PML-RARA)mRNA was positive, while that for CD56 was negative. Since her white blood cell( WBC) count was <3,000/µL, with a count of APL cells of <1,000/µL, she was started on monotherapy with all-trans retinoic acid(ATRA). In September Year X-3, complete hematological remission(CHR)was confirmed. she refused to provide consent for receiving consolidation therapy. In February Year X-2, hematological relapse occurred. She was started on re-induction therapy with arsenite(ATO), and in June Year X-2, complete molecular remission(CMR)was achieved. She was started on post-remission therapy with ATO. In August Year X-1, she developed molecular relapse and was started on tamibarotene(Am80). In October Year X-1, hematological relapse was detected, and the test for CD56 was positive. She was started on combined venetoclax(VEN)+azacitidine(AZA)(VEN+AZA). After completion of 1 course of treatment, CMR was achieved, but she developed hematological relapse after 5 courses of treatment. She died of gastrointestinal hemorrhage. This is considered a valuable case for accumulating information on the treatment of CD56-positive APL resistant to ATRA and ATO.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Promielocítica Aguda , Sulfonamidas , Humanos , Feminino , Idoso de 80 Anos ou mais , Leucemia Promielocítica Aguda/tratamento farmacológico , Trióxido de Arsênio/uso terapêutico , Azacitidina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tretinoína/uso terapêutico , Recidiva
2.
Case Rep Hematol ; 2023: 8568587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124780

RESUMO

We report a case of FLT3-mutated APL who developed disease relapse despite all-trans retinoic acid (ATRA) + chemotherapy, and re-induction chemotherapy with arsenic trioxide (ATO) and high-dose (HD) cytarabine (Ara-C) therapy failed to yield complete remission. Because the leukemic cells were resistant to all the aforementioned therapies, we started the patient on monotherapy with gilteritinib, a selective FLT3-inhibitor, as an alternative re-induction treatment option rather than further intensive chemotherapy. The patient showed complete hematologic remission in response to this therapy. This case serves as supporting evidence for the use of single-agent therapy with gilteritinib as a bridge to transplantation in patients with refractory FLT3-mutated APL.

4.
J Tissue Eng ; 13: 20417314221074018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083031

RESUMO

Tendons and ligaments are essential connective tissues that connect the muscle and bone. Their recovery from injuries is known to be poor, highlighting the crucial need for an effective therapy. A few reports have described the development of artificial ligaments with sufficient strength from human cells. In this study, we successfully generated a tendon-like tissue (bio-tendon) using human induced pluripotent stem cells (iPSCs). We first differentiated human iPSCs into mesenchymal stem cells (iPSC-MSCs) and transfected them with Mohawk (Mkx) to obtain Mkx-iPSC-MSCs, which were applied to a newly designed chamber with a mechanical stretch incubation system. The embedded Mkx-iPSC-MSCs created bio-tendons and exhibited an aligned extracellular matrix structure. Transplantation of the bio-tendons into a mouse Achilles tendon rupture model showed host-derived cell infiltration with improved histological score and biomechanical properties. Taken together, the bio-tendon generated in this study has potential clinical applications for tendon/ligament-related injuries and diseases.

5.
Nat Commun ; 12(1): 4148, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230481

RESUMO

Osteoarthritis (OA), the most common aging-related joint disease, is caused by an imbalance between extracellular matrix synthesis and degradation. Here, we discover that both strands of microRNA-455 (miR-455), -5p and -3p, are up-regulated by Sox9, an essential transcription factor for cartilage differentiation and function. Both miR-455-5p and -3p are highly expressed in human chondrocytes from normal articular cartilage and in mouse primary chondrocytes. We generate miR-455 knockout mice, and find that cartilage degeneration mimicking OA and elevated expression of cartilage degeneration-related genes are observed at 6-months-old. Using a cell-based miRNA target screening system, we identify hypoxia-inducible factor-2α (HIF-2α), a catabolic factor for cartilage homeostasis, as a direct target of both miR-455-5p and -3p. In addition, overexpression of both miR-455-5p and -3p protect cartilage degeneration in a mouse OA model, demonstrating their potential therapeutic value. Furthermore, knockdown of HIF-2α in 6-month-old miR-455 knockout cartilage rescues the elevated expression of cartilage degeneration-related genes. These data demonstrate that both strands of a miRNA target the same gene to regulate articular cartilage homeostasis.


Assuntos
Cartilagem/metabolismo , Homeostase , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Osteoartrite/genética , Fatores de Transcrição SOX9
6.
J Bone Miner Metab ; 39(5): 780-786, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33988755

RESUMO

INTRODUCTION: The periodontal ligament (PDL) plays an important role in orthodontic tooth movement; however, the underlying molecular mechanism remains unclear. We have previously reported that the Mohawk homeobox (Mkx), a tendon-specific transcription factor, is expressed in the PDL and regulates its homeostasis. MATERIALS AND METHODS: In the present study, we examined the role of Mkx in orthodontic tooth movement via bone remodeling induced by mechanical stimulation in Mkx-deficient rats, which are widely used as experimental animals for orthodontic force application. Orthodontic tooth movement of the maxillary first molar was performed in 7-week-old male Mkx-deficient rats (n = 4) and wild-type Wistar rats (n = 4) using coil springs for 14 days. Hematoxylin and eosin (H&E) staining and tartrate-resistant acid phosphatase (TRAP) staining were performed to evaluate morphological changes and osteoclasts. Furthermore, changes in the expression of receptor activator nuclear factor-kappa B ligand (RANKL) were demonstrated using immunostaining. RESULTS: The amount of tooth movement was significantly lower in Mkx-deficient rats than in wild-type rats. The number of TRAP-positive cells was suppressed in Mkx-deficient rats on the compression side. CONCLUSION: Orthodontic tooth movement experiments in Mkx-deficient rats suggested that Mkx is involved in osteoclast induction at the alveolar bone surface on the compression side. This study reveals the possibility that Mkx plays a mechanosensory role in orthodontic tooth movement by inducing RANKL expression and osteoclastogenesis.


Assuntos
Osteoclastos , Técnicas de Movimentação Dentária , Animais , Remodelação Óssea , Masculino , Ligamento Periodontal , Ratos , Ratos Wistar , Fosfatase Ácida Resistente a Tartarato
7.
Front Cell Dev Biol ; 8: 307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671057

RESUMO

Tendons and ligaments are pivotal connective tissues that tightly connect muscle and bone. In this study, we developed a novel approach to generate tendon/ligament-like tissues with a hierarchical structure, by introducing the tendon/ligament-specific transcription factor Mohawk (MKX) into the mesenchymal stem cell (MSC) line C3H10T1/2 cells, and by applying an improved three-dimensional (3D) cyclic mechanical stretch culture system. In our developed protocol, a combination of stable Mkx expression and cyclic mechanical stretch synergistically affects the structural tendon/ligament-like tissue generation and tendon related gene expression. In a histological analysis of these tendon/ligament-like tissues, an organized extracellular matrix (ECM), containing collagen type III and elastin, was observed. Moreover, we confirmed that Mkx expression and cyclic mechanical stretch, induced the alignment of structural collagen fibril bundles that were deposited in a fibripositor-like manner during the generation of our tendon/ligament-like tissues. Our findings provide new insights for the tendon/ligament biomaterial fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...